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Abstract: Given a general source V = fV ng1n=1 with countably in�nite

source alphabet and a general channel W = fW ng1
n=1 with arbitrary ab-

stract channel input and output alphabets, we study the joint source-channel

coding problem from the information-spectrum point of view. First, we gen-

eralize Feinstein's lemma (direct part) and Verd�u-Han's lemma (converse

part) so as to be applicable to the general joint source-channel coding prob-

lem. Based on these lemmas, we establish a su�cient condition as well as

a necessary condition for the source V to be reliably transmissible over the

channel W with asymptotically vanishing probability of error. It is shown

that our su�cient condition coincides with the su�cient condition derived

by Vembu, Verd�u and Steinberg, whereas our necessary condition is much

stronger than the necessary condition derived by them. Actually, our nec-

essary condition coincide with our su�cient condition if we disregard some

asymptotically vanishing terms appearing in those conditions. Also, it is

shown that Separation Theorem in the generalized sense always holds. In

addition, we demonstrate a su�cient condition as well as a necessary condi-

tion for the "-transmissibility (0 � " < 1). Finally, the separation theorem

of the traditional standard form is shown to hold for the class of sources and

channels that satisfy the ( semi-) strong converse property.

Index terms: general source, general channel, joint source-channel

coding, separation theorem, information-spectrum, transmissibility, gener-

alized Feinstein's lemma, generalized Verd�u-Han's lemma
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1 Introduction

Given a source V = fV ng1n=1 and a channel W = fW ng1n=1, the joint

source-channel coding means that the encoder maps the output from the

source directly to the channel input (one step encoding), where the prob-

ability of decoding error is required to vanish as block-length n tends to

1. In usual situations, however, the joint source-channel coding can be

decomposed into separate source coding and channel coding (two step en-

coding). This two step encoding does not cause any disadvantages from the

standpoint of asymptotically vanishing error probabilities, provided that the

so-called Separation Theorem holds.

Typically, the traditional separation theorem, which we call the sepa-

ration theorem in the narrow sense, states that if the in�mum Rf (V) of

all achievable �xed-length coding rates for the source V is smaller than the

capacity C(W) for the channel W then the source V is reliably transmis-

sible by two step encoding over the channel W; whereas if Rf (V) is larger

than C(W) then the reliable transmission is impossible. While the former

statement is always true for any general source V and any general channel

W, the latter statement is not always true. Then, a very natural question

may be raised for what class of sources and channels and in what sense the

separation theorem holds in general.

Shannon [1] has �rst shown that the separation theorem holds for the

class of stationary memoryless sources and channels. Since then, this theo-

rem has received extensive attention by a number of researchers who have

attempted to prove versions that apply to more and more general classes of

sources and channels. Among others, for example, Dobrushin [2] and Hu [4]

have studied the separation theorem problem in the context of information-

stable sources and channels.

Recently, on the other hand, Vembu, Verd�u and Steinberg [5] have put

this problem in a much more general information-spectrum context with

any general source V and any general channel W. From the viewpoint

of information spectra, they have generalized the notion of the separation

theorem and shown that, in many cases even with Rf (V) > C(W), it is

possible to reliably transmit the output of the source V over the channel

W. Furthermore, in terms of information spectra, they have established a

su�cient condition for the transmissibility as well as a necessary condition

for the transmissibility. It should be noticed here that, in general joint

source-channel coding situations, what indeed matters is not the validity

problem of the separation theorem but what is the necessary and su�cient
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condition for the transmissibility. However, while their su�cient condition

looks simple and signi�cantly tight, their necessary condition is very far from

tight.

The present paper was mainly motivated by the reasonable question why

these two conditions are very far from one another. In Section 3, we �rst

demonstrate two fundamental lemmas: a generalization of Feinstein's lem-

ma [11] and a generalization of Verd�u-Han's lemma [8], which provide with

the �rm basis for the key results to be stated in the subsequent section-

s. These lemmas are of the information-spectrum forms in nice accordance

with the general joint source-channel coding with countably in�nite source

alphabet, arbitrary abstract channel input and output alphabets. In Sec-

tion 4, given a general source V and a general channel W we establish,

in terms of information-spectra, a su�cient condition (Direct theorem) for

the transmissibility as well as a necessary condition (Converse theorem) for

the transmissibility. These two conditions are very close from each other,

and actually coincides with one another if we disregard some asymptotically

vanishing term. In this sense, we may regard these conditions together as

specifying a \necessary and su�cient condition" for the transmissibility.

Next, we equivalently rewrite these conditions in the forms useful to

see the relation with the separation theorem. As a consequence, it turns

out that the equivalent form of our su�cient condition just coincides with

the su�cient condition given by Vembu, Verd�u and Steinberg [5], whereas

the equivalent form of our necessary condition is much stronger than the

necessary condition given by them. In this connection, one of our main con-

clusions is that Separation Thorem in the generalized sense always holds for

all the sources and channels that satisfy this equivalent su�cient condition.

On the other hand, in Section 5, we demonstrate a su�cient condition

as well as a necessary condition for the "-transmissibility, which is the gen-

eralization of the su�cient condition as well as the necessary condition as

was shown in Section 4. Finally, in Section 6, we restrict the class of sources

and channels to those that satisfy the strong converse property (or the semi-

strong converse property) to show that the separation theorem in the narrow

sense holds for this class. This theorem corresponds to the standarad typical

separation theorem as was described in [5, Theorem 3].
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2 Basic Notation and De�nitions

In this preliminary section, we prepare the basic notation and de�nitions

which will be used in the subsequent sections.

2.1 General Source

Let us �rst give here the formal de�ntion of the general source. The general

source is de�ned as an in�nite sequence V = fV n = (V
(n)
1 ; � � � ; V (n)

n )g1n=1 of

n-dimensional random variables V n where each component random variable

V
(n)
i

(1 � i � n) takes values in a countably in�nite set V that we call

the source alphabet. It should be noted here that each component of V n

may change depending on block length n. This implies that the sequence

V is quite general in the sense that it may not satisfy even the consistency

condition as usual processes, where the consistency condition means that

for any integers m;n such that m < n it holds that V
(m)
i

� V
(n)
i

for all

i = 1; 2; � � � ;m: The class of sources thus de�ned covers a very wide range of

sources including all nonstationary and/or nonergodic sources (cf. Han and

Verd�u [6]).

2.2 General Channel

The formal de�nition of the general channel is as follows. Let X ;Y be ar-

bitrary abstract (not necessarily countable) sets, which we call the input

alphabet and the output alphabet, respectively. The general channel is de-

�ned as an in�nite sequenceW = fW n(�j�) : X n ! Yng1
n=1 of n-dimensional

probability transition matrices W n, where W n(yjx) (x 2 X n;y 2 Yn) de-
notes the conditonal probability of y given x.� The class of channels thus

de�ned covers a very wide range of channels including all nonstationary

and/or nonergodic channels with arbitrary memory structures (cf. Han and

Verd�u [6]).

Remark 2.1 A more reasonable de�nition of the general source is the fol-

lowing. Let fVng1n=1 be any sequence of arbitrary source alphabets Vn (a

countabley in�nite or abstract set) and let Vn be any random variable taking

values in Vn (n = 1; 2; � � �). Then, the sequence V = fVng1n=1 of random

�In the case where the output alphabet Y is abstract, Wn(yjx) is understood to be the

(conditional) probability measure element Wn(dyjx) that is measurable in x.
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variables Vn is called a general source (cf. Verd�u and Han [7]). The above

de�nition is a special case of this general source with Vn = Vn (n = 1; 2; � � �).
On the other hand, a more reasonable de�nition of the general channel

is the following. Let fWn : Xn ! Yng1n=1 be any sequence of arbitrary

probability transition matrices, where Xn;Yn are arbitrary abstract sets.

Then, the sequence W = fWng1n=1 of probability transition matrices Wn is

called a general channel (cf. Han [9]). The above de�nition is a special case

of this general channel with Xn = X n;Yn = Yn (n = 1; 2; � � �).
The key results in this paper (Lemma 3.1, Lemma 3.2, Theorem 4.1, The-

orem 4.2, Theorem 4.3, Theorem 4.4, Theorem 5.1, Theorem 5.2 and Theo-

rem 6.5 ) continue to be valid as well also in this more general setting with

Vn; V n;V and X n;Yn;W n;W replaced by Vn, Vn;V and Xn;Yn;Wn;W,

respectively.

In the sequel we use the convention that PZ(�) denotes the probability

distribution of a random variable Z, whereas PZjU(�j�) denotes the condition-
al probability distribution of a random variable Z given a random variable

U . 2

2.3 Joint Source-Channel Coding

Let V = fV n = (V
(n)
1 ; � � � ; V (n)

n )g1n=1 be any general source, and let W =

fW n(�j�) : X n ! Yng1n=1 be any general channel. We consider an encoder

'n : Vn ! X n and an decoder  n : Yn ! Vn, and put Xn = 'n(V
n). Then,

denoting by Y n the output from the channel W n due to the input Xn, we

have the obvious relation:

V n ! Xn ! Y n (a Markov chain): (2:1)

The probability "n of decoding error with the code ('n;  n) is de�ned by

"n � Pr fV n 6=  n(Y
n)g

=
X
v2Vn

PV n(v)W n(Dc(v)j'n(v)); (2.2)

where D(v) � fy 2 Ynj n(y) = vg (8v 2 Vn) (D(v) is called the decoding

set for v) and \c" denotes the complement of a set. A pair ('n;  n) with

probability "n of decoding error is simply called a joint source-channel (n; "n)

code.

We now de�ne the transmissibility in terms of joint source-channel codes

(n; "n) as
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De�nition 2.1

Source V is transmissible over channel W
def() There exists an (n; "n) code

such that lim
n!1

"n = 0:

With this de�nition of transmissibility, in the following sections we shall

establish a su�cient condition as well as a necessary condition for the trans-

missibility when we are given a geneal source V and a general channel W.

These two conditions are very close to each other and can actually be seen

as giving the same condition if we disregard an asymptotically negligible

term n ! 0 appearing in those conditions (cf. Section 4).

3 Fundamental Lemmas

In this section, we prepare two fundamental lemmas that are needed in

the next section in order to establish the main theorems (Direct part and

Converse part).

Lemma 3.1 (Generalization of Feinstein's lemma) Given a general source

V = fV ng1n=1 and a general channel W = fW ng1n=1, let X
n be any input

random variable taking values in X n, which may be arbitrarily correlated

to the source variable V n, and Y n be the channel output via W n due to the

channel input Xn. Then, for every n = 1; 2; � � �, there exists an (n; "n) code

such that

"n � Pr

�
1

n
log

W n(Y njXn)

PY n(Y n)
� 1

n
log

1

PV n(V n)
+ 

�
+ e�n ; (3:1)

wherey  > 0 is an arbitrary positive number.

Remark 3.1 In a special case where the source V = fV ng1n=1 is uniformly

distributed on the massage set Mn = f1; 2; � � � ;Mng, it follows that
1

n
log

1

PV n(V n)
=

1

n
logMn;

yIn the case where the input and output alphabets X ;Y are abstract (not necessarily

countable),
W
n(Y njXn)
P
Y
n (Y n)

in (3.1) is understood to be g(Y njXn), where g(yjx) �
W
n(dyjx)

P
Y
n (dy)

=
W
n(dyjx)P

X
n(dx)

P
Y
n (dy)P

X
n (dx)

=
P
X
n
Y
n (dx;dy)

P
X
n (dx)P

Y
n (dy)

is the Radon-Nikodym derivative that is measur-

able in (x;y).
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which implies that the entropy spectrumz of the source V = fV ng1n=1 is

exactly one point spectrum concentrated on 1
n
logMn. Therefore, in this

special case, Lemma 3.1 reduecs to Feinstein's lemma [11]. 2

Proof of Lemma3.1:

For each v 2 Vn, generate x(v) 2 X n at random according to the con-

ditional distribution PXnjV n(�jv) and let x(v) be the codeword for v. In

other words, we de�ne the encoder 'n : Vn ! X n as x(v) = 'n(v), where

fx(v) j 8v 2 Vng are all independently generated. We de�ne the decoder

 n : Yn ! Vn as follows: Set

Sn =

�
(v;x;y) 2 Zn

���� 1n log
W n(yjx)
PY n(y)

>
1

n
log

1

PV n(v)
+ 

�
;

(3.2)

Sn(v) = f(x;y) 2 X n � Yn j(v;x;y) 2 Sn g ; (3.3)

where for simplicity we have put Zn � Vn � X n � Yn. Suppose that the

decoder  n received a channel output y 2 Yn. If there exists one and

only one v 2 Vn such that (x(v);y) 2 Sn(v), de�ne the decoder as v =

 n(y) with that v; otherwise, let the output of the decoder  n(y) 2 Vn be

arbitrary. Then, the probability "n of error for this pair ('n;  n) of encoder

and decoder (averaged over all the realizatioins of the random code) is given

by

"n =
X
v2Vn

PV n(v)"n(v); (3:4)

where "n(v) is the probability of error (averaged over all the realizatioins of

the random code) when v 2 Vn is the source output. We can evaluate "n(v)

as

"n(v) � Pr f(x(v); Y n) =2 Sn(v)g

+Pr

8<
:

[
v0:v0 6=v

�
(x(v0); Y n) 2 Sn(v0)

	9=;
zThe probablity distribution of 1

n
log 1

P
V
n (V n)

is called the entropy spectrum of the

sourceV = fV ng1n=1, whereas the probability distribution of 1
n
log

W
n(Y njXn)

P
Y
n (Y n)

is called the

mutual information spectrum of the channelW = fWng1n=1 given the inputX = fXng1n=1

(cf. Han and Verd�u [6]).
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� Pr f(x(v); Y n) =2 Sn(v)g
+

X
v0:v0 6=v

Pr
�
(x(v0); Y n) 2 Sn(v0)

	
; (3.5)

where Y n is the channel output via W n due to the channel input x(v). The

�rst term on the right-hand side of (3.5) is written as

An(v) � Pr f(x(v); Y n) =2 Sn(v)g
=

X
(x;y)=2Sn(v)

PXnY njV n(x;yjv):

Hence,X
v2Vn

PV n(v)An(v) =
X
v2Vn

PV n(v)
X

(x;y)=2Sn(v)

PXnY njV n(x;yjv)

=
X

(v;x;y)=2Sn

PV nXnY n(v;x;y)

= Pr fV nXnY n =2 Sng : (3.6)

On the other hand, noting that x(v0);x(v) (v0 6= v) are independent and

hence x(v0), Y n are also independent, the second term on the right-hand

side of (3.5) is evaluated as

Bn(v) �
X

v0:v0 6=v

Pr
�
(x(v0); Y n) 2 Sn(v0)

	

=
X

v0:v0 6=v

X
(x;y)2Sn(v0)

PY njV n(yjv)PXn jV n(xjv0)

�
X
v02Vn

X
(x;y)2Sn(v0)

PY njV n(yjv)PXn jV n(xjv0):

Hence, X
v2Vn

PV n(v)Bn(v)

�
X
v2Vn

X
v02Vn

X
(x;y)2Sn(v0)

PV n(v)PY njV n(yjv)PXn jV n(xjv0)

=
X
v02Vn

X
(x;y)2Sn(v0)

PY n(y)PXn jV n(xjv0): (3.7)

Since, if (x;y) 2 Sn(v0), then by means of (3.2), (3.3) we have

PY n(y) � PV n(v0)W n(yjx)e�n ;
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(3.7) is further transformed toX
v2Vn

PV n(v)Bn(v)

� e�n
X
v02Vn

X
(x;y)2Sn(v0)

PV n(v0)PXnjV n(xjv0)W n(yjx)

� e�n
X

(v0;x;y)2Zn

PV n(v0)PXnjV n(xjv0)W n(yjx)

= e�n : (3.8)

Then, from (3.4), (3.6) and (3.8) it follows that

"n =
X
v2Vn

PV n(v)"n(v)

�
X
v2Vn

PV n(v)An(v) +
X
v2Vn

PV n(v)Bn(v)

� Pr fV nXnY n =2 Sng+ e�n :

Thus, there must exist a deterministic (n; "n) code such that

"n � Pr fV nXnY n =2 Sng+ e�n ;

thereby proving Lemma 3.1. 2

Lemma 3.2 (Generalization of Verd�u-Han's lemma) LetV = fV ng1n=1

and W = fW ng1n=1 be a general source and a general channel, respectively,

and let 'n : Vn ! X n be the encoder of an (n; "n) code for (V
n; W n). Put

Xn = 'n(V
n) and let Y n be the channel output via W n due to the channel

input Xn. Then, for every n = 1; 2; � � �, it holds that

"n � Pr

�
1

n
log

W n(Y njXn)

PY n(Y n)
� 1

n
log

1

PV n(V n)
� 

�
� e�n ; (3:9)

where  > 0 is an arbitrary positive number.

Remark 3.2 In a special case where the source V = fV ng1n=1 is uniformly

distributed on the massage set Mn = f1; 2; � � � ;Mng, it follows that
1

n
log

1

PV n(V n)
=

1

n
logMn;
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which implies that the entropy spectrum of the source V = fV ng1n=1 is

exactly one point spectrum concentrated on 1
n
logMn. Therefore, in this

special case, Lemma 3.2 reduecs to Verd�u-Han's lemma [8]. 2

Proof of Lemma3.2

De�ne

Ln =

�
(v;x;y) 2 Zn

���� 1n log
W n(yjx)
PY n(y)

� 1

n
log

1

PV n(v)
� 

�
; (3:10)

and, for each v 2 Vn, set

D(v) = fy 2 Ynj n(y) = vg ;

that is, D(v) is the decoding set for v. Moreover, for each (v;x) 2 Vn�X n,

set

B(v;x) = fy 2 Ynj(v;x;y) 2 Lng : (3:11)

Then, noting the Markov chain property (2.1), we have

Pr fV nXnY n 2 Lng
=

X
(v;x;y)2Ln

PV nXnY n(v;x;y)

=
X

(v;x)2Vn�Xn

PV nXn(v;x)W n(B(v;x)jx)

=
X

(v;x)2Vn�Xn

PV nXn(v;x)W n(B(v;x) \ Dc(v)jx)

+
X

(v;x)2Vn�Xn

PV nXn(v;x)W n(B(v;x) \ D(v)jx)

�
X

(v;x)2Vn�Xn

PV nXn(v;x)W n(Dc(v)jx)

+
X

(v;x)2Vn�Xn

PV nXn(v;x)W n(B(v;x) \ D(v)jx)

= "n +
X

(v;x)2Vn�Xn

PV nXn(v;x)W n(B(v;x) \ D(v)jx)

= "n +
X

(v;x)2Vn�Xn

PV nXn(v;x)
X

y2B(v;x)\D(v)

W n(yjx); (3.12)
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where we have used the relation:

"n =
X

(v;x)2Vn�Xn

PV nXn(v;x)W n(Dc(v)jx):

Now, it follows from (3.10) and (3.11) that y 2 B(v;x) implies

W n(yjx) � e�nPY n(y)

PV n(v)
;

which is substituted into the right-hand side of (3.12) to yield

Pr fV nXnY n 2 Lng
� "n + e�n

X
(v;x)2Vn�Xn

PXnjV n(xjv)
X

y2B(v;x)\D(v)

PY n(y)

� "n + e�n
X

(v;x)2Vn�Xn

PXnjV n(xjv)PY n(D(v))

= "n + e�n
X
v2Vn

PY n(D(v))

= "n + e�n ;

thereby proving the claim of the lemma. 2

4 Theorems on Transmissibility

In this section we give both of a su�cient condition and a necessary condition

for the transmissibility with a given general souce V = fV ng1n=1 and a given

general channel W = fW ng1n=1.

First, Lemma 3.1 immediately leads us to the following direct theorem:

Theorem 4.1 (Direct theorem) Let V = fV ng1
n=1, W = fW ng1

n=1 be

a general source and a general channel, respectively. If there exist some

channel input X = fXng1n=1, which may be arbitrarily correlated to the

output of the source V = fV ng1n=1, and also some sequence fng1n=1 of real

nubers with

n > 0; n ! 0 and nn !1 (n!1) (4:1)

for which it holds that

lim
n!1

Pr

�
1

n
log

W n(Y njXn)

PY n(Y n)
� 1

n
log

1

PV n(V n)
+ n

�
= 0; (4:2)
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then the source V = fV ng1n=1 is transmissible over the channel W =

fW ng1n=1, where Y
n is the channel output via W n due to the channel input

Xn.

Proof:

Since in Lemma 3.1 we can choose the constant  > 0 so as to depend

on n, let us take, instead of , an arbitrary fng1n=1 satisfying condition

(4.1). Then, the second term on the right-hand side of (3.1) vanishes as n

tends to 1, and hence it follows from (4.2) that the right-hand side of (3.1)

vanishes as n tends to1. Therefore, the (n; "n) code as speci�ed in Lemma

3.1 satis�es lim
n!1

"n = 0. 2

Next, Lemma 3.2 immediately leads us to the following converse theorem:

Theorem 4.2 (Converse theorem) Suppose that a general source V =

fV ng1n=1 is transmissible over a general channel W = fW ng1n=1. Then,

for some channel input X = fXng1n=1, which may be arbitrarily correlated

to the output of the source V = fV ng1n=1, and for any sequence fng1n=1

satisfying condition (4.1), it holds that

lim
n!1

Pr

�
1

n
log

W n(Y njXn)

PY n(Y n)
� 1

n
log

1

PV n(V n)
� n

�
= 0; (4:3)

where Y n is the channel output via W n due to the channel input Xn.

Proof:

If V is transmissible over W, then, by De�nition 2.1 there exists an

(n; "n) code such that lim
n!1

"n = 0. Denote by 'n the encoder of this code

and put Xn = 'n(V
n). Moreover, if we denote by Y n the channel output

via W n due to the channel input Xn, then the claim of the theorem imme-

diately follows from (3.9) in Lemma 3.2 with n instead of . 2

Remark 4.1 Comparing (4.3) in Theorem 4.2 with (4.2) in Theorem 4.1,

we observe that the only di�ence is that the sign of n is changed from +

to �. Since n vanishes as n tends to 1, this di�erence is asymptotically

negligible. Thus, except for this asymptotically negligible di�erence, Theo-

rem 4.1 together with Theorem 4.2 can be regarded as providing with a \

necessary and su�cient condition" for the source V = fV ng1n=1 to be trans-

missible over the channel W = fW ng1n=1. 2
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Now, let us think of the implication of conditions (4.2), (4.3). First, let

us think of (4.2). Putting

An =
1

n
log

W n(Y njXn)

PY n(Y n)
; Bn =

1

n
log

1

PV n(V n)

for simplicity, (4.2) is written as

�n � Pr fAn � Bn + ng ! 0 (n!1); (4:4)

which can be transformed to

Pr fAn � Bn + ng
=

X
u

Pr fBn = ugPr fAn � Bn + njBn = ug

=
X
u

Pr fBn = ugPr fAn � u+ njBn = ug :

Set

Tn = fu j Pr fAn � u+ njBn = ug � p�ng ; (4:5)

then by virtue of (4.4) and Markov inequality, we have

Pr fBn 2 Tng � 1�p�n: (4:6)

Let us now de�ne the upper cumulative probabilities for An; Bn by

Pn(t) = Pr fAn � tg ; Qn(t) = Pr fBn � tg ;

then it follows that

Pn（t） =
X
u

Pr fBn = ugPr fAn � tjBn = ug

�
X
u2Tn:

u�t�n

Pr fBn = ugPr fAn � tjBn = ug

�
X
u2Tn:

u�t�n

Pr fBn = ugPr fAn � u+ njBn = ug : (4.7)

On the other hand, by means of (4.5), u 2 Tn implies that

Pr fAn � u+ njBn = ug � 1�p�n:

12



Theore, by (4.6), (4.7) it is concluded that

Pn(t) � (1�p�n)
X
u2Tn:

u�t�n

Pr fBn = ug

� (1�p�n)(Qn(t� n)� Pr fBn =2 Tng)
� (1�p�n)(Qn(t� n)�p�n)
� Qn(t� n)� 2

p
�n:

This means that, for all t, the upper cumulative probability Pn(t) of An

is larger than or equal to the upper cumulative probability Qn(t � n) of

Bn, except for the asymptotically vanishing di�erence 2
p
�n. This in turn

implies that, as a whole, the mutual information spectrum of the channel is

shifted to the right in comparison with the entropy spectrum of the source.

With �n instead of n, the same implication follows also from (4.3). This is

the information-spectrum implication of the \necessary and su�cient con-

dition" (4.2), (4.3). It is such an allocation relation between the mutual

information spectrum and the entropy spectrum that enables us to make an

transmissible joint source-channel coding.

However, it is not easy in general to check whether conditions (4.2),

(4.3) in these forms are satis�ed or not. Therefore, we consider to equiv-

alently rewrite conditions (4.2), (4.3) into the forms easier to check. This

can actually be done by re-choosing the input and output variables Xn; Y n

as follows. These forms are useful in order to see the relation of conditions

(4.2), (4.3) with the so-called Separation Theorem.

First, we show the equivalent information-spectrum form of the su�cient

condition (4.2) in Theorem 4.1.

Theorem 4.3 (Equivalence of su�cient conditions) The following t-

wo conditions are equivalent:

1) For some channel input X = fXng1n=1, which may be arbitrarily

correlated to the output of the source V = fV ng1n=1, and for some sequence

fng1n=1 satisfying condition (4.1), it holds that

lim
n!1

Pr

�
1

n
log

W n(Y njXn)

PY n(Y n)
� 1

n
log

1

PV n(V n)
+ n

�
= 0; (4:8)

where Y n is the channel output via W n due to the channel input Xn.

2) (Strict domination: Vembu, Verd�u and Steinberg [5]) For some

channel input X = fXng1n=1, which may be arbitrarily correlated to the

13



output of the source V = fV ng1n=1, and for some sequence fcng1n=1 and

some sequence fng1n=1 satisfying condition (4.1), it holds that

lim
n!1

�
Pr

�
1

n
log

1

PV n(V n)
� cn

�

+ Pr

�
1

n
log

W n(Y njXn)

PY n(Y n)
� cn + n

��
= 0; (4.9)

where Y n is the channel output via W n due to the channel input Xn.

Remark 4.2 (Separation) 　The su�cient condition 2) in Theorem 4.3

means that the entropy spectrum of tha source and the mutual information

spectrum of the channel are asymptotically completely split with the vacant

boundary of asymptotically vanishing width n, and the former is placed to

the left of the latter, where these two spectra may vibrate \synchronously"

with n. In the case where such a separation condition 2) is satis�ed, we can

make the transmissible joint source-channel coding in two steps as follows

(Separation of source coding and channel coding): We �rst encode the source

output V n at the �xed-length coding rate cn =
1

n
logMn, and then encode

the output of the source encoder into the channel. The error probabilty "n
for this two step coding is upper bounded by the sum of the average error

probability of the �xed-length source coding (cf. Han [9], [10]):

Pr

�
1

n
log

1

PV n(V n)
� cn

�

and the maximum error probability of the channel coding (cf. Feinstein

[11]):

Pr

�
1

n
log

W n(Y njXn)

PY n(Y n)
� cn + n

�
+ e�nn :

It then follows from (4.9) that both of these two error probabilities vanish as

n tends to1, where it should be noted that e�nn ! 0 as n!1. Thus, we

have lim
n!1

"n = 0 to conclude that the source V = fV ng1n=1 is transmissible

over the channel W = fW ng1n=1. This gives also another proof of Theorem

4.1. 2

Proof of Theorem 4.3:

14



2) ) 1): For any joint probability distribution PV nXn for V n and Xn, we

have

Pr

�
1

n
log

W n(Y njXn)

PY n(Y n)
� 1

n
log

1

PV n(V n)
+ n

�

� Pr

�
1

n
log

1

PV n(V n)
� cn

�

+Pr

�
1

n
log

W n(Y njXn)

PY n(Y n)
� cn + n

�
;

which together with (4.9) implies (4.8).

1) ) 2)：Supposing that condition 1) holds, put

�n � Pr

�
1

n
log

W n(Y njXn)

PY n(Y n)
� 1

n
log

1

PV n(V n)
+ n

�
; (4:10)

and moreover, with 0n =
n

4
; �n = max(

p
�n; e

�n0
n), put

dn = sup

�
R

����Pr
�
1

n
log

1

PV n(V n)
� R

�
> �n

�
� 0n: (4:11)

Furthermore, if we put

Sn =

�
v 2 Vn

���� 1n log
1

PV n(v)
� dn

�
; (4.12)

�(1)n = Pr fV n 2 Sng ; �(2)n = Pr fV n =2 Sng ; (4.13)

then the joint probability distribution PV nXnY n can be written as a mixture:

PV nXnY n(v;x;y)

= �(1)n P ~V n ~Xn ~Y n(v;x;y) + �(2)n P
V
n

X
n

Y
n(v;x;y); (4.14)

where P ~V n ~Xn ~Y n ; PV n

X
n

Y
n are the conditional probability distributions of

V nXnY n conditioned on V n 2 Sn; V
n =2 Sn, respectively. We notice here

that the Markov chain property V n ! Xn ! Y n implies P ~Y nj ~Xn = P
Y
n

jX
n

=W n as well as the Markov chain properties

~V n ! ~Xn ! ~Y n; V
n ! X

n ! Y
n
:

15



We now rewrite (4.10) as

�n = �(1)n Pr

(
1

n
log

W n( ~Y nj ~Xn)

PY n( ~Y n)
� 1

n
log

1

PV n( ~V n)
+ n

)

+�(2)n Pr

(
1

n
log

W n(Y
njXn

)

PY n(Y
n
)

� 1

n
log

1

PV n(V
n
)
+ n

)
:

(4.15)

On the other hand, since (4.11), (4.12) lead to �
(1)
n > �n � p�n, it follows

from (4.15) that

Pr

(
1

n
log

W n( ~Y nj ~Xn)

PY n( ~Y n)
� 1

n
log

1

PV n( ~V n)
+ n

)
� p�n: (4:16)

Then, by the de�nition of ~V n,

1

n
log

1

PV n( ~V n)
� dn;

and so from (4.16), we obtain

Pr

(
1

n
log

W n( ~Y nj ~Xn)

PY n( ~Y n)
� dn + n

)
� p�n: (4:17)

Next, since it follows from (4.14) that

PY n(y) = �(1)n P ~Y n(y) + �(2)n P
Y
n(y)

� �(1)n P ~Y n(y)

� �nP ~Y n(y)

� e�n
0
nP ~Y n(y);

we have
1

n
log

1

PY n( ~Y n)
� 1

n
log

1

P ~Y n( ~Y n)
+ 0n;

which is substituted into (4.17) to get

Pr

(
1

n
log

W n( ~Y nj ~Xn)

P ~Y n( ~Y n)
� dn + n � 0n

)
� p�n: (4:18)
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On the other hand, by the de�nition (4.11) of dn,

Pr

�
1

n
log

1

PV n(V n)
� dn + 20n

�
� �n: (4:19)

Set cn = dn + 20n and note that �n ! 0; �n ! 0 (n ! 1) and 0n =
n

4
,

then by (4.18), (4.19) we have

lim
n!1

�
Pr

�
1

n
log

1

PV n(V n)
� cn

�

+ Pr

(
1

n
log

W n( ~Y nj ~Xn)

P ~Y n( ~Y n)
� cn +

1

4
n

)!
= 0:

Finally, resetting ~Xn ~Y n,
1

4
n as XnY n and n, respectively, we conclude

that condition 2), i.e., (4.9) holds. 2

Next, we show the equivalent information-spectrum form of the necessary

condition (4.3) in Theorem 4.2.

Theorem 4.4 (Equivalence of necessary conditions) The following t-

wo conditions are equivalent:

1) For some channel input X = fXng1n=1, which may be arbitrarily

correlated to the output of the source V = fV ng1n=1, and for any sequence

fng1n=1 satisfying condition (4.1), it holds that

lim
n!1

Pr

�
1

n
log

W n(Y njXn)

PY n(Y n)
� 1

n
log

1

PV n(V n)
� n

�
= 0; (4:20)

where Y n is the channel output via W n due to the channel input Xn.

2) (Domination) For some channel input X = fXng1n=1, which may

be arbitrarily correlated to the output of the source V = fV ng1n=1, and for

some sequence fcng1n=1 and any sequence fng1n=1 satisfying condition (4.1),

it holds that

lim
n!1

�
Pr

�
1

n
log

1

PV n(V n)
� cn

�

+ Pr

�
1

n
log

W n(Y njXn)

PY n(Y n)
� cn � n

��
= 0; (4.21)

where Y n is the channel output via W n due to the channel input Xn.
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Proof: This theorem can be proved in the entirely same manner as in the

proof of Theorem 4.3 with n replaced by �n. 2

Remark 4.3 (Separation Theorem) The necessary condition 2) in Theo-

rem 4.4 means that the entropy spectrum of tha source and the mutual

information spectrum of the channel are asymptotically completely split ex-

cept for the part of asymptotically vanishing width n, and the former is

placed to the left of the latter. This observation corresponds to the impli-

cation of the su�cient condition 2) in Theorem 4.3 (cf. Remark 4.2). If we

disregard the asymptotically vanishing terms �n, condition 2) in Theorem

4.3 together with condition 2) in Theorem 4.4 can be regarded as providing

with a \necessary and su�cient condition" for the source V = fV ng1n=1 to

be transmissible over the channel W = fW ng1n=1. Thus, in view of Remark

4.2, we can say that Separation Theorem continues to hold in a wider sense

also for the general joint source-channel coding in consideration. 2

Remark 4.4 Actually, the de�nition of domination given by Vembu, Verd�u

and Steinberg [5] is not condition 2) in Theorem 4.4 but the following:

20) (Domination) For any sequencefcng1n=1and for any sequence fng1n=1

satisfying condition (4.1), there exists some channel input X = fXng1
n=1

such that

lim
n!1

�
Pr

�
1

n
log

1

PV n(V n)
� cn

�

　� Pr

�
1

n
log

W n(Y njXn)

PY n(Y n)
� cn � n

��
= 0 (4.22)

holds, where Y n is the channel output via W n due to the channel input Xn.

It is easy to see that this necessary condition 20) is implied by the neces-

sary condition 2) in Theorem 4.4. In fact, the latter is much stronger than

the former as necessary conditions for the transmissibility. 2

5 "-Transmissibility Theorem

So far we have considered only the case where the error probability "n sat-

is�es the condition lim
n!1

"n = 0. However, we can relax this condition as

18



follows:

lim sup
n!1

"n � "; (5:1)

where " is any constant such that 0 � " < 1. (It is obvious that the special

case with " = 0 coincides with the case that we have considered so far.) We

now say that the source V is "-transmissible over the channelW when there

exists an (n; "n) code satisfying condition (5.1).

Then, the same arguments as in the previous sections with due slight

modi�cations lead to the following two theorems in parallel with Theorem

4.1 and Theorem 4.2, respectively:

Theorem 5.1 ("-Direct theorem) Let V = fV ng1n=1, W = fW ng1n=1

be a general source and a general channel, respectively. If there exist some

channel input X = fXng1n=1, which may be arbitrarily correlated to the

output of the source V = fV ng1
n=1, and also some sequence fng1n=1 of real

nubers with

n > 0; n ! 0 and nn !1 (n!1) (5:2)

for which it holds that

lim sup
n!1

Pr

�
1

n
log

W n(Y njXn)

PY n(Y n)
� 1

n
log

1

PV n(V n)
+ n

�
� "; (5:3)

then the source V = fV ng1n=1 is "-transmissible over the channel W =

fW ng1n=1, where Y
n is the channel output via W n due to the channel input

Xn. 2

Theorem 5.2 ("-Converse theorem) Suppose that a general sourceV =

fV ng1n=1 is "-transmissible over a general channel W = fW ng1n=1. Then,

for some channel input X = fXng1n=1, which may be arbitrarily correlated

to the output of the source V = fV ng1n=1, and for any sequence fng1n=1

satisfying condition (5.2), it holds that

lim sup
n!1

Pr

�
1

n
log

W n(Y njXn)

PY n(Y n)
� 1

n
log

1

PV n(V n)
� n

�
� "; (5:4)

where Y n is the channel output via W n due to the channel input Xn. 2

It should be noted here that such a su�cient condition (5.3) as well as

such a necessary condition (5.4) for the "-transmissibility cannot actually be

derived in the way of generalizing the strict domination in (4.9) and the dom-

ination in (4.21). It should be noted also that, under the "-transmissibility

criterion, Separation Theorem does not necessarily hold.
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6 Separation Theorem for a Class of Sources and

Channels

In this section, we consider, as a special case of Theorem 4.1�Theorem 4.4,

the case where either the sourceV = fV ng1n=1 or the channelW = fW ng1n=1

satis�es the strong converse property. In this special case, Theorem 4.1 and

Theorem 4.2 can be written in much simpler forms.

In order to show this, we need some preparations. Let Rf (V), C(W)

denote the in�mum of all achievable �xed-length coding rates for the source

V = fV ng1n=1 and the capacity for the channelW = fW ng1n=1, respectively.

A general sourceV = fV ng1n=1 is said to satisfy the strong converse property

if the probability "n of decoding error for �xed-length source coding with any

rate R such that R < Rf (V) necessarily approaches one as n tends to1 (cf.

Han [9]). Moreover, a general channel W = fW ng1n=1 is said to satisfy the

strong converse property if the probability "n of decoding error for channel

coding with any rate R such that R > C(W) necessarily approaches one as

n tends to 1 (cf. Verd�u and Han [8]).

De�nex

H(V) � p- lim sup
n!1

1

n
log

1

PV n(V n)
;

I(X;Y) � p- lim inf
n!1

1

n
log

W n(Y njXn)

PY n(Y n)
;

where Y n is the channel output via W n due to the channel input Xn and

we have put X = fXng1n=1, Y = fY ng1n=1. Then, we have

Theorem 6.1 (Han and Verd�u [6])

Rf (V) = H(V): (6:1)

Theorem 6.2 (Verd�u and Han [8])

C(W) = sup
X

I(X;Y): (6:2)

xFor any sequence fZng
1
n=1 of real-valued random variables, we de�ne the limit superior

in probability (cf. Han and Verd�u [6]) of fZng
1
n=1 by p- lim sup

n!1

Zn = inff�j lim
n!1

PrfZn >

�g = 0g. Also, we de�ne the limit inferior in probability (cf. Han and Verd�u [6]) of

fZng
1
n=1 by p- lim inf

n!1
Zn = supf�j lim

n!1
PrfZn < �g = 0g:
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Theorem 6.3 (Han [9]) The necessary and su�cient condition for the source

V to satisfy the strong converse property is

H(V) = H(V); (6:3)

where

H(V) � p- lim inf
n!1

1

n
log

1

PV n(V n)
: (6:4)

Theorem 6.4 (Verd�u and Han [8]) The necessary and su�cient condition

for the channel W to satisfy the strong converse property is

sup
X

I(X;Y) = sup
X

I(X;Y); (6:5)

where

I(X;Y) � p- lim sup
n!1

1

n
log

W n(Y njXn)

PY n(Y n)
: (6:6)

With these preparations, we have the following separation theorem for

the class of sources and channels as stated above.

Theorem 6.5 (Separation theorem) Let either the sourceV = fV ng1n=1

or the channel W = fW ng1n=1 satisfy the strong converse property. Then,

the following two statements hold:

1) If Rf (V) < C(W), then the source V is transmissible over the channel

W. In this case, we can separate the source coding and the channel

coding (Separation of codings).

2) If the source V is transmissible over the channelW, then it must hold

that Rf (V) � C(W).

Proof:

1): In the proof of this part, the assumption of the strong converse

property is not necessary. Since Rf (V) = H(V), C(W) = sup
X

I(X;Y) by

Theorem 6.1 and Theorem 6.2, the inequality Rf (V) < C(W) implies that

condition 2) in Theorem 4.3 holds forX = fXng1n=1 attaining the supremum

sup
X

I(X;Y) if we put, for example, cn =
1

2
(Rf (V) + C(W)). Therefore, the

source V is transmissible over the channel W.
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2): If the source V is transmissible over the channel W, then condition

2) in Theorem 4.4 holds, and hence we have

lim
n!1

Pr

�
1

n
log

1

PV n(V n)
� cn

�
= 0: (6:7)

First, suppose that the source V satis�es the strong converse property.

Then, it follows from (6.7), the de�nition of H(V) and Theorem 6.3 that

H(V) = H(V) � lim inf
n!1

cn:

Moreover, by virtue of condition 2) in Theorem 4.4 we have

lim
n!1

Pr

�
1

n
log

W n(Y njXn)

PY n(Y n)
� cn � n

�
= 0: (6:8)

Then, it follows from (6.8) and the de�nition of I(X;Y) that

I(X;Y) � lim inf
n!1

cn;

where we have put X = fXng1n=1;Y = fY ng1n=1. Hence, it is concluded

that

Rf (V) = H(V) � I(X;Y) � sup
X

I(X;Y) = C(W):

Next, suppose that the channel W satis�es the strong converse property.

Then, it follows from (6.8), the de�nition of I(X;Y) and Theorem 6.2,

Theorem 6.4 that

lim sup
n!1

cn � I(X;Y) � sup
X

I(X;Y) = sup
X

I(X;Y) = C(W):

On the other hand, from (6.7) and the de�nition of H(V) we have

H(V) � lim sup
n!1

cn:

Thus, it is again concluded that Rf (V) = H(V) � C(W). 2

Remark 6.1 In the proof of Theorem 6.5 2) we have invoked the domina-

tion in the sense of Theorem 4.4 2). Notice, however, that the domination

in the sense of Remark 4.4 20) cannot lead us to establish Theorem 6.5 2).
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Example 6.1 If neither the source V = fV ng1n=1 nor the channel W =

fW ng1n=1 satis�es the strong converse property, the statement 2) in Theo-

rem 6.5 does not necessarily hold. For example, let V = X = Y = f0; 1g,
and consider the case where, if n is even, then PV n is the uniform distri-

bution on Vn and W n is the identity mapping; otherwise if n is odd, then

PV n(0n) = 1; W n(0njx) = 1 (8x 2 X n), where 0n denotes the sequence

of n 0's. It is obvious in this case that the source V is transmissible over

the channel W with zero error probability, although neither the source V

nor the channel W satis�es the strong converse property. However, since

it is easy to check that Rf (V) = log 2 and C(W) = 0, the statement 2) in

Theorem 6.5 does not hold for this example. 2

Let us now compare Theorem 6.5 with the standard classical separation

theorem. To this end, we need to record some de�nitions as follows: A

general source V = fV ng1n=1 is said to be information-stable (cf. Dobrushin

[2], Pinsker [3]) if
1
n
log 1

PV n (V
n)

Hn(V n)
! 1 in prob.; (6:9)

where Hn(V
n) = 1

n
H(V n) and H(V n) stands for the entropy of V n (cf.

Cover and Thomas [13]). Moreover, a general channel W = fW ng1n=1 is

said to be information-stable (cf. Dobrushin [2], Hu [4]) if there exists a

channel input X = fXng1n=1 such that

1
n
log

W (Y njXn)
PY n (Y

n)

Cn(W n)
! 1 in prob.; (6:10)

where

Cn(W
n) = sup

Xn

1

n
I(Xn;Y n);

and Y n is the channel output via W n due to the channel input Xn; and

I(Xn;Y n) is the mutual information between Xn and Y n (cf. Cover and

Thomas [13]). Then, we can summarize the typical classical separation

theorem as follows, which is slightly di�erent from Theorem 6.5:

Theorem 6.6 (Vembu, Verd�u and Steinberg [5]) Let the channelW = fW ng1n=1

be information-stable and suppose that the limit lim
n!1

Cn(W
n) exists. Or,

let the source V = fV ng1n=1 be information-stable and suppose that the

limit lim
n!1

Hn(V
n) exists. Then, the following two statements hold:
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1) If Rf (V) < C(W), then the source V is transmissible over the channel

W. In this case, we can separate the source coding and the channel

coding (Separation of codings).

2) If the source V is transmissible over the channelW, then it must hold

that Rf (V) � C(W).

It is not di�cult to verify that, in the case where both of channel input

alphabet X and channel output alphabet Y are non-�nite abstract sets, either

the strong converse property of the channel W assumed in Theorem 6.5 or

the information-stability of the channelW together with the existence of the

limit assumed in Theorem 6.6 is not implied by the other. In this sense, both

theorems have their own rights. On the other hand, with countably in�nite

source alphabet V, the information-stability of the source V together with

the existence of the limit assumed in Theorem 6.6 implies the strong converse

property of the source V assumed in Theorem 6.5. In this sense, Theorem

6.5 is stronger than Theorem 6.6.

It should be pointed out here that in general it is more or less easier to

check the validity of the condition in Theorem 6.5 than that of the condition

in Theorem 6.6.

Finally, let us now consider to generalize both of Theorem 6.5 and The-

orem 6.6. In fact, we can strengthen Theorem 6.5 so as to include also

Theorem 6.6 as a special case. To do so, let us de�ne the concept of semi-

strong converse property as follows. A general source V = fV ng1n=1 is said

to satisfy the semi-strong converse property if for all divergent subsequences

fnig1n=1 of positive integers such that n1 < n2 < � � � ! 1 it holds that

p- lim sup
i!1

1

ni
log

1

PV n
i (V ni)

= H(V): (6:11)

A general channelW = fW ng1n=1 is said to satisfy the semi-strong converse

property if for any channel input X = fXng1n=1 and for all divergent subse-

quences fnig1n=1 of positive integers such that n1 < n2 < � � � ! 1 it holds

that

p- lim inf
i!1

1

ni
log

W ni(Y ni jXni)

PY n
i (Y ni)

� sup
X

I(X;Y); (6:12)

where Y n is the channel output via W n due to the channel input Xn.

With these de�nitions, we have the following separation theorem.

Theorem 6.7 (Separation theorem) Let either the sourceV = fV ng1n=1

or the channel W = fW ng1n=1 satisfy the semi-strong converse property.

Then, the following two statements hold:
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1) If Rf (V) < C(W), then the source V is transmissible over the channel

W. In this case, we can separate the source coding and the channel

coding (Separation of codings).

2) If the source V is transmissible over the channelW, then it must hold

that Rf (V) � C(W).

Proof:

The proof is the same as that of Theorem 6.5 based on Theorem 4.4

2), except for that, here, owing to the assumed conditions, we directly have

H(V) � lim inf
n!1

cn (if the source V satis�es the semi-strong converse prop-

erty) and lim sup
n!1

cn � supX I(X;Y) (if the channel W satis�es the semi-

strong converse property). 2

Remark 6.2 It is obvious that the strong converse property implies the

semi-strong converse property for either the source or the channel. There-

fore, Theorem 6.7 includes Theorem 6.5 as a special case. Similarly, it is not

di�cult to check that the information stability together with the existence

of the limit implies the semi-strong converse property for either the source

or the channel. Hence, Theorem 6.7 includes Theorem 6.6 as a special case.

Thus, Theorem 6.7 is the strongest among these three separation theorems

in the traditional sense.

Csisz�ar and K�orner [12] have posed two operational standponits in source

coding and channel coding, i.e., the pessimistic standpint and the optiimistic

standpint. In their terminology, for source coding, the semi-strong convserse

property is equivalent to the condition that both of the pessimistic standpint

and the optiimistic standpint result in the same in�mum of all achievable

�xed-length source coding rates. Similarly, for channel coding, the semi-

strong convserse property is equivalent to the condition that both of the

pessimistic standpint and the optiimistic standpint result in the same supre-

mum of all achievable channel coding rates. 2

Example 6.2 Let us consider two di�erent stationary memoryless sources

V1 = fV n
1 g1n=1, V2 = fV n

2 g1n=1 with countably in�nite source alphabet V,
and de�ne its mixed source V = fV ng1n=1 by

PV n(v) = �1PV n

1
(v) + �2PV n

2
(v) (v 2 Vn);
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where �1, �2 are positive constants such that �1+�2 = 1. Then, this mixed

source V = fV ng1n=1 satis�es the semi-strong converse property but neither

the strong converse property nor the information-stability.

Similarly, let us consider two di�erent stationary memoryless channels

W1 = fW n
1 g1n=1, W2 = fW n

2 g1n=1 with arbitrary abstract input and output

alphabets X ;Y, and de�ne its mixed channel W = fW ng1n=1 by

W n(yjx) = �1W
n

1 (yjx) + �2W
n

2 (yjx) (x 2 X n;y 2 Yn):

Then, this mixed channel W = fW ng1n=1 satis�es the semi-strong con-

verse property but neither the strong converse property nor the information-

stability. 2
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