量子情報科学ウィンタースクール 量子秘密分散法

小川朋宏

電気通信大学 大学院情報システム学研究科

2010年2月27日

What is Quantum Secret Sharing Schemes?

O Classical Secret Sharing Schemes (SSS)

- (k, n)-threshold SSS (Shamir 1979, Blakley 1979)
- (k, L, n)-threshold ramp SSS (Yamamoto 1985, Blakley-Meadows 1985)

Quantum Secret Sharing Schemes (QSSS)

to encode classical messages (bit) to encode quantum states (qbit)

- O What for ?
 - outputs of quantum computer
 - outputs of expensive apparatus
 - quantum key in cryptography with quantum algorithm

Literature on QSSS

- O (k, n)-threshold QSSS (Cleve-Gottesman-Lo, 1999)
- O Coding efficiency of perfect QSSS (Gottesman, 2000)
- O Information theoretical treatment (Imai et al., 2003) based on coherent information and reference system
- Our Goal
- Information theoretical treatment
 based on reversibility and Holevo Information
- O Coding efficiency of ramp QSSS and optimal construction

Quantum Secret Sharing Schemes (QSSS)

O $\mathcal{S}(\mathcal{H})$: totality of density operators on \mathcal{H}

 $--\mathcal{H}$: Hilbert space----

 ${oldsymbol
ho}$: original state $\in {\mathcal S}({\mathcal H})$

 \Downarrow W_N : encoder into shares $N = \{1, 2, \dots, n\}$ $-\mathcal{H}_N=\mathcal{H}_1\otimes\mathcal{H}_2\otimes\cdots\otimes\mathcal{H}_n$ – $W_N(\rho)$: entangled state partial trace for a subset $X \subseteq N$ $\overline{\mathcal{H}_X} = \bigotimes_{i \in X} \mathcal{H}_i$ $W_X(\rho) = \operatorname{Tr}_{N \setminus X} \cdot W_N(\rho)$ $W_X(\rho) \text{ reproduces } \rho \text{ or not } ?$

Authorized and Unauthorized Sets

encoder partial trace

$$\rho \in \mathcal{S}(\mathcal{H}) = W_N \longrightarrow W_N(\rho) = \operatorname{Tr}_{N \setminus X} \longrightarrow W_X(\rho)$$

O subset $X \subseteq N$ $W_X = \operatorname{Tr}_{N \setminus X} \cdot W_N$

O X : authorized

$$\stackrel{\text{def}}{\longleftrightarrow} W_X(\rho) \text{ can reproduce } \rho \text{ for } \forall \rho \in \mathcal{S}(\mathcal{H})$$

O X : unauthorized

()

 $\stackrel{\mathrm{def}}{\Longleftrightarrow} W_X(\rho) \text{ has no information about } \rho \in \mathcal{S}(\mathcal{H}) \text{ for } \forall \rho$

X: intermediate $\stackrel{\text{def}}{\iff}$ otherwise

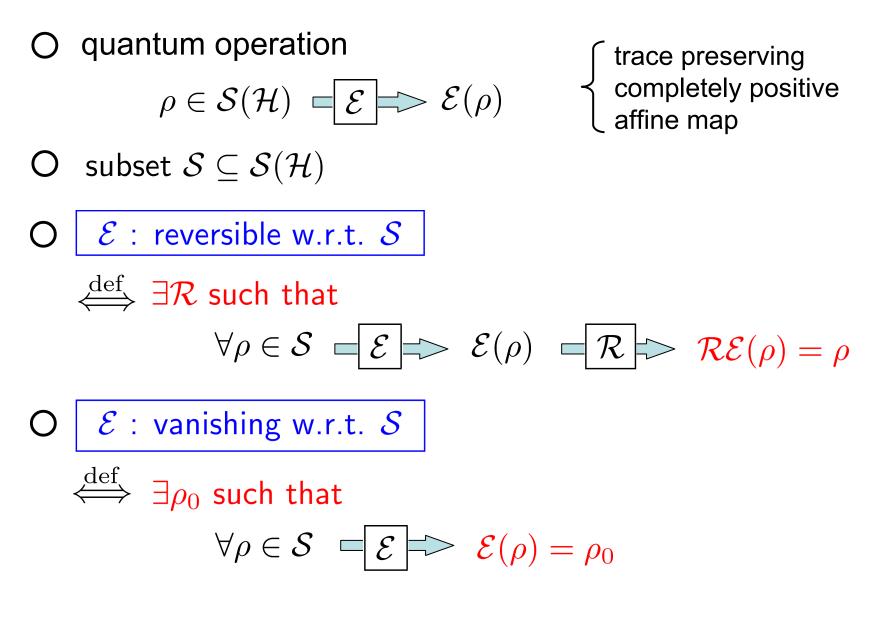
Perfect Schemes and Ramp Schems

$$\rho \in \mathcal{S}(\mathcal{H}) = W_N \implies W_N(\rho) = \operatorname{Tr}_{N \setminus X} \implies W_X(\rho)$$

$\stackrel{\text{def}}{\Longleftrightarrow} X \text{ is either authorized or unauthorized for } \forall X \subseteq N$

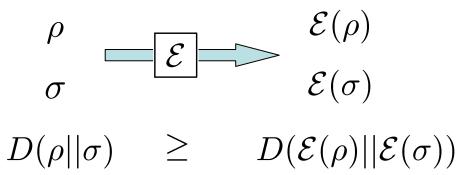
$$\stackrel{\mathrm{def}}{\Longleftrightarrow}$$
 otherwise

Reversibility of Quantum Operations



Quantum Relative Entropy

- **O** $D(\rho||\sigma) \stackrel{\text{def}}{=} \operatorname{Tr}[\rho(\log \rho \log \sigma)]$
- O monotonicity



– Theorem (Petz, 1986) –

The following conditions are equivalent.

1. \mathcal{E} is reversible w.r.t. $\{\rho, \sigma\}$

2. $D(\rho || \sigma) = D(\mathcal{E}(\rho) || \mathcal{E}(\sigma))$

Holevo Information

- $O \quad \mathcal{E}$: quantum operation
- $\mathsf{O} \quad \mu : \text{ probability measure on } \mathcal{S} \subseteq \mathcal{S}(\mathcal{H})$

$$\mathbf{E}_{\mu}[\cdot] \stackrel{\text{def}}{=} \int_{\mathcal{S}} \cdot \mu(\mathbf{d}\rho) \qquad \sigma_{\mu} \stackrel{\text{def}}{=} \mathbf{E}_{\mu}[\rho]$$

Holevo Information for \mathcal{E} and μ

$$I(\mu; \mathcal{E}) \stackrel{\text{def}}{=} \mathcal{E}_{\mu}[D(\mathcal{E}(\rho) || \mathcal{E}(\sigma_{\mu}))]$$

O also written as

 \bigcirc

$$I(\mu; \mathcal{E}) = H(\mathcal{E}(\sigma_{\mu})) - \mathcal{E}_{\mu}[H(\mathcal{E}(\rho))]$$
$$H(\rho) \stackrel{\text{def}}{=} -\text{Tr}[\rho \log \rho] : \text{ von Neumann entropy}$$

Holevo Information and Reversibility

- $\begin{array}{ll} \mathsf{O} & \mathcal{P}_+(\mathcal{S}): \text{ set of probability measures on } \mathcal{S} \subseteq \mathcal{S}(\mathcal{H}) \\ \\ \mathsf{O} & \mu \in \mathcal{P}_+(\mathcal{S}) \end{array}$
- **O** monotonicity $I(\mu; \mathcal{I}) \ge I(\mu; \mathcal{E})$ (\mathcal{I} : identity)

Theorem 1
The following conditions are equivalent.
1. *E* is reversible (resp. vanishing) w.r.t. *S*

- 2. $\forall \mu \in \mathcal{P}_+(\mathcal{S}), \ I(\mu; \mathcal{E}) = I(\mu; \mathcal{I}) \text{ (resp. } = 0)$
- 3. $\exists \mu \in \mathcal{P}_+(\mathcal{S}), \ I(\mu; \mathcal{E}) = I(\mu; \mathcal{I}) \text{ (resp. } = 0)$

O cf. Schumacher and Nielsen, 1996

Authorized (Unauthorized) Condition for Shares

- O $\mathcal{E} = W_X$ $\mathcal{S} = \mathcal{S}_1(\mathcal{H})$: set of pure states
- O reversibility w.r.t. $\mathcal{S}(\mathcal{H}) \iff$ reversibility w.r.t. $\mathcal{S}_1(\mathcal{H})$
- O Holevo information for $\mu \in \mathcal{P}_+(\mathcal{S}_1(\mathcal{H}))$

$$I(\mu; \mathcal{I}) = H(\sigma_{\mu}) - \mathbb{E}_{\mu}[H(\rho)] \geq I(\mu; W_X)$$

0 for pure state

- Theorem 2 —

The following conditions are equivalent.

1. X is authorized (resp. unauthorized)

2. $\forall \mu \in \mathcal{P}_+(\mathcal{S}_1(\mathcal{H})), \ I(\mu; W_X) = H(\sigma_\mu) \text{ (resp. } = 0)$

3. $\exists \mu \in \mathcal{P}_+(\mathcal{S}_1(\mathcal{H})), \ I(\mu; W_X) = H(\sigma_\mu) \text{ (resp. } = 0)$

Coding Efficiency of Perfect QSSS

Theorem 3 (cf. Imai et al. 2003) —

$$\forall X \subseteq N \quad \forall \mu \in \mathcal{P}_+(\mathcal{S}_1(\mathcal{H}))$$

 $H(\sigma_\mu) \leq H(W_X(\sigma_\mu))$

 $\begin{array}{c} \mu : \text{ invariant measure on } \mathcal{S}_1(\mathcal{H}) \\ \quad \quad \text{(uniform distribution on pure states)} \\ \implies \sigma_\mu = I/\dim \mathcal{H} \end{array} \end{array}$

Corollary 1 (Gottesman 2000) -

 $\forall i \in N \qquad \dim \mathcal{H} \le \dim \mathcal{H}_i$

Proof of Theorem 3 (1)

O For $X \subseteq N$ $\exists Y$: unauthorized $\implies I(\mu; W_Y) = 0$ $X \cup Y$: authorized $\implies I(\mu; W_{XY}) = H(\sigma_{\mu})$

 $O H(\sigma_{\mu}) = I(\mu; W_{XY}) - I(\mu; W_Y)$

 $= H(W_{XY}(\sigma_{\mu})) - \mathcal{E}_{\mu}[H(W_{XY}(\rho))] - H(W_{Y}(\sigma_{\mu})) + \mathcal{E}_{\mu}[H(W_{Y}(\rho))]$

- $\leq H(W_X(\sigma_\mu)) \mathcal{E}_\mu[H_\rho(W_X|W_Y)]$
- O subadditivity

 $H(W_{XY}(\sigma_{\mu})) \le H(W_X(\sigma_{\mu})) + H(W_Y(\sigma_{\mu}))$

O conditional entropy

 $H_{\rho}(W_X|W_Y) \stackrel{\text{def}}{=} H(W_{XY}(\rho)) - H(W_Y(\rho))$

Proof of Theorem 3 (2)

 $\mathsf{O}\ Y$: unauthorized $X \cup Y$: authorized

 $H(\sigma_{\mu}) \leq H(W_X(\sigma_{\mu})) - \mathcal{E}_{\mu}[H_{\rho}(W_X|W_Y)]$

O classical case : $H_{\rho}(W_X|W_Y) \ge 0$

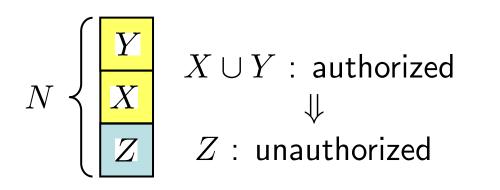
O quantum case : $H_{\rho}(W_X|W_Y) \ge 0$

Proof of Theorem 3 (3)

O
$$\rho$$
: pure state $\implies W_N(\rho)$: pure state
(:: Steinspring dilation, called pure state scheme)
O $X \cap Y = \emptyset$
 $Z \stackrel{\text{def}}{=} N \setminus X \cup Y$

O no cloning theorem

O no deleting theorem



$$\frac{Y}{X}$$

Y : unauthorized \Downarrow $X \cup Z$: authorized

 ${\sf O}\ Z$ has the same property as Y !

Proof of Theorem 3 (4)